Multi-agent Cognitive Sensing for Behavioral Biometrics

1/7/2011

Qi Hao
Outline

• Cognitive Sensor
• Heterogeneous Sensor System
• Agent-oriented Programming
• Multi-agent System Architecture
• Behavioral Biometrics
• Cognitive Sensing for Behavioral Biometrics
Machine Intelligence

• Perception: detection, fusion/aggregation
 – Analog to Information (A2I)

• Cognition:
 – Pre-conceptualization (prior knowledge)
 – Conceptualization (context/situation awareness, pattern modeling)
 – Predication & Decision (across-scale/modal)

• Action: presentation, fission/de-aggregation
 – Information to Analog (I2A)
Human Brain

- Power Consumption: 20 ~40 W
- Number of Neurons: 100 billion

Axon: send information
Dendrites: receive information
Synapse: point of connection

visual, auditory, gustatory, olfactory
haptic, thermal sensors
Biological Sensing

[Image of a diagram showing the process of biological sensing, labeled A and B, with steps from visual field to location map, summation clusters, and numerosity detector neurons.]

[Text citation: Mainen and Sejnowski, 1996]
Neuron Excitation

A

Pre area

Post area

B

Pre area

Post neuron
Cognitive Geometry Sensing

Target Geometry

Sampling Geometry

Random Projection

Information Aggregation

Sensing Layer

e-Projection

Information Layer

m-Projection
Heterogeneous Sensors

Thermal Sensors Optical-fiber Pressure Sensor Laser Sensor

Photonic Sensors Acoustic Sensors
Novel Sampling Geometries

Signal Signature: [0 0 0 1 0 1], [1 0 0 0 1 0]
Agile Sensing Protocol

Probabilistic Medium Access Controller

Bernoulli Encoder

Pseudorandom number generator

ICA

$\Sigma f_s / N$

PCA

multinomial distribution

HMM
Cognitive Sensor

- **Spatial Awareness**
 - Understanding its geometric relation to targets and peer sensors
- **Data Awareness**
 - Using sparse representation of information
- **Group Awareness**
 - Understanding activities of other sensors
- **Context Awareness**
 - Understanding its operational situation
Agent Oriented Programming

- IBM – ebXML, tpaXML
- XbML
- DARPA Agent Mark Up Language (DAML)

- Embedded in the programming language
- Awareness of environment
- Learning capability
- Collaborations of agents of different purposes
Object- v.s. Agent-Oriented

• Object
 – Public/private data
 – Communication: message
 – Initialization/instantiation, deconstruction

• Agent
 – Beliefs, commitments, choices
 – Communication: inform, request, decline, promise
 – Mental state: evolving and learning
Type of Agents

- **Sensing Agent**
 - Contains various sensing modalities
 - Reconfigurable computing capability

- **Action Agent**
 - Adaptive control, calibration
 - Adaptive communication

- **Decision Agent**
 - Feature Modeling, Behavior Analysis
 - Tracking, Recognition

- **Database Agent**
 - Behavior template
 - Context/situation models (context awareness)
 - Information of registered agents (group awareness)
Interaction of Agents

Interaction Drivers

(1) Data-to-feature driver
(2) Compression driver
(3) Aggregation and filtering driver
(4) Calibration driver
(5) Diffusion Driver
Behavioral biometrics

- Identify subjects based on their behavioral traits
- Gesture, gait, walking trajectory, body pressure dynamics, speech habit, handwriting habit, keystroke/mouse dynamics
- Collection of geometric information of subjects over time
- Finding repeatable signal patterns in the temporal-spatial domain
Pros and Cons

• Pros
 – Long distance measurement
 – No need for cooperation of subjects
 – Low sensing resolution
 – Easy information fusion of multiple sensing modalities
 – Useful for psychological information measurement
 – Robust against disguise and cosmetic conditions

• Cons
 – Higher error rates
 – Longer collection time
Applications

• Surveillance and security
• Tele-health care and hospital/prison monitoring
• Intelligent human machine interface
• Energy-aware buildings
• Robotics
Compressive Behavioral Biometrics

Subject Binary Measurements Statistical Model Visualization

Compressive/Agile Sensing Statistical Manifold Learning 3D Model Reconstruction
Multi-agent Cognitive Sensing for Behavior Biometrics

Behavioral Biometrics Applications

Decision Agent

Database Agent

Inter-agent Interaction

Adaptive Control and Communication

Reconfigurable Digital Signal Processing

Action Agent (Servo Control)

Sensing Agent (Infrared)

Sensing Agent (Fiber-optic Pressure)

Sensing Agent (Acoustic)

Sensing Agent (Laser/photonic)

Physical Layer

Object Space

Behavioral Biometrics Database

Multi-agent Architecture

System Adaptation

Reconfigurable Computing

Wireless Link and Networking